G.-A. Berner ATIQUE
ATIQUE
AL'HORLOGEI

Praktische Notizen
für den Uhrmacher

O www.lhreniiter

Haftungsausschluss

Die Beteiligten an diesem Buch übernehmen keinerlei Verantwortung bzw. Haftung für mögliche Schäden. Dies gilt auch für durehzeführte Arbeiten gemäß den hier vorgestellten Beschreibungen und Darstellungen.

Die in diesem Buch enthaltenen Zeichnungen der Maschinen und Werkzeuge sind als technische Skizzen zu verstehen die sich auf die rein funktionellen Aspekte beschränken. Passive Sicherheitsbauteile sind nicht dargestellt. Sie sind vom jeweiligen Anwender selbst auszulegen und an die tatsächlichen Werkstatt und Maschinengegebenheiten anzupassen. Der Normen- und Technologiestand ist 1948.

REPRINT

© Historische Uhrenbücher Verlag: Florian Stern, Berlin 2018 www.uhrenliteratur.de service@uhrenliteratur.de Alle Rechte vorbehalten Hrsg.: Michael Stern, Berlin Druck: SDL, Berlin

ISBN 978-3-939315-64-3

NOTES PRATIQUES POUR L'HORLOGER

par G.-A. Berner, ancien Directeur de l'Ecole d'horlogerie de Bienne

Les échappements . Réglage et rhabillage

Troisième édition, revue et augmente

Tous droits réservés

Praktische Notizen für den Uhrmacher

von G.-A. Berner, alt Direktor der Uhrmacherschule Biel

De Zugfeder und ihr Federhaus . Berechnung von Eingriffen . Hemmungen . Regulierung

Dritte, vermehrte und revidierte Auflage
1948
Alle Rechte vorbehalten

Editions horlogères Charles Rohr & Cie Bienne Suisse

Table des matières

Le Ressort et son barillet

Calcul du ressort
Influence de l'épaisseur, de la hauteur et de la longueur du ressort
Principales causes qui influencent l'effort-moteur du ressort de barillet
Le dynamomètre
Influence de la forme des ressorts
Conclusions pratiques
Les Engrenages
Introduction
Quelques définitions nécessaires
Notations utilisées
Calcul du module
Le rouage de la montre. Epaisseurs des dents des roues et pignons
Calculer les dimensions d'une roue
Connaissant le diamètre total de la roue, calculer le module
Calculer les dimensions d'un pignon
Calcul du diamètre des novaux des pignons
Calculer un mobile perdu du rouge
A. Rouage habituel d'une montre sans seconde
B. Rouage habituel d'une montre avec seconde
C. Rouage avec un pignon supplémentaire
D. Rouage et minuterie d'une montre Roskopf
Rouage des mécanismes de remontoir et de mise à l'heure
Epaisseur des dents
Calculer les (fimensions d'un renvoi ou d'un pignon
Calculer un rochet ou couronne perdu
Calculer une roue et un pignon de minuterie perdus
Calculer un pignon coulant perdu
Calculer un pignon de remontoir perdu
Examen et correction d'un engrenage
Les profils théoriques et corrigés
L'arc-boutement
La chute
Pierres et pivots
Lubrifiants
Nettoyage
Ajustement des aiguilles
Encliquetage

Inhaltsverzeichnis

Die	Zugfeder	und	ihr	Federhaus
-----	----------	-----	-----	-----------

Berechnung der Feder
Einfluss der Dicke, Höhe und Länge der Feder
Die hauptsächlichsten Einflüsse auf die Triebkraft einer Zugfeder
Das Dynamometer
Einfluss der Form der Zugfedern
Praktische Schlussfolgerungen
Traktische Schlüssfolgerungen
Berechnung von Eingriffen
Einleitung
Verwendete Bezeichnungen
Berechnung des Moduls
Das Räderwerk der Uhr. Zahnbreite von Rädern und Trieben 49
Berechnung der Masse eines Rades
Berechnung des Moduls, wenn der Totaldurchnieser des Rades ge-
Verwendete Bezeichnungen
Berechnung der Masse eines Triebes
Berechnung des Durchmessers der Triebkerne
Berechnung eines verlorenen Bestandteils des Räderwerkes
A. Übliches Räderwerk einer Uhr ohne Sekundenangabe 59
Berechnung des Durchmessers der Triebkeine
C. Räderwerk mit einem zusätzlichen Trieb 69
D. Räderwerk und Zeigerwerk einer Roskopfuhr
Räderwerk des Aufzug- und Zeigerstellmechanismus
Zahnbreite
Berechnung der Masse eines Zeigerstellrades oder eines Triebes
Berechnung eines verlorenen Sperrades oder Kronrades
Berechnung eines verlorenen Rades oder Triebes des Zeigerwerkes 83
Berechnung eines verlorenen Schiebetriebes
Berechnung eines verlorenen Aufzugtriebes
Prüfung und Berichtigung eines Eingriffes
Theoretische und korrigierte Profile
Das Aufsetzen
Der Nachfall
Steine und Zapfen
Schmiermittel
Reinigung
Einpassen der Zeiger
Gesperr
Support

Echappements

Echappement à ancre suisse	120
Fonctions et sûretés	120
Chemins parcourus par des leviers variant de 1,30 à 4 mm	122
Mesures des chutes, des repos et du tirage	134
Valeurs linéaires des sûretés	136
Echappement à cylindre	136
Echappement a cylindre	150
Réglage et rhabillage	
Terminologie	140
Bulletin de montre-bracelet et de montre de poche	142
Tableau relatif au calcul d'un bulletin de marche pour montres-	
bracelet	146
Tableau relatif au calcul d'un bulletin de marche pour montres de	
poche	147
Amplitude des oscillations	148
Exemples de calculs pour montres-bracelet genres Ac B. C.	149
poche Amplitude des oscillations Exemples de calculs pour montres-bracelet genres A. B. C. Réglages stables et instables — Isochronisme Suppression des goupilles de raquette Choisir le spiral qui convient au balancier	152
Suppression des goupilles de raquette	158
Choisir le spiral qui convient au balancier	160
Spiraux compensateurs pour balanciers more métalliques	162
Spiraux pour balanciers hi-métalliques soupés	162
Principally types de halanciers	163
Spiraux compensateurs pour balanciers mono-métalliques Spiraux pour balanciers bi-métalliques coupés Principaux types de balanciers La pression athmosphérique Influence de la pression atmosphérique sur les chronomètres Réglage rapide au moyen des chronocomparateurs Desgé de présision de division des chronocomparateurs	164
Influence de la pression atmosphérique sur les chronomètres	172
Réglage rapide au moyen des chronocomparateurs	174
Degré de précision de divers instruments horaires	184
Tableau des limites pour l'obtention du titre «chronomètre»	187
rableau des fillites point obtention du title «cirronometre»	107
Aide-mémoire du régleur	
Résumé des causes et effets perturbateurs de la marche des montres	
Ressort — Engliquetage — Engrenages — Pivots	188
Lubrifiants — Echappements	190
Balancier — Spiral	192
Point de repère - Goupilles de raquette - Virole - Piton -	
Cadran et aiguilles — Pression atmosphérique — Altitude	194
Magnétisme	196
Chocs, secousses, vitesse — Poussières, humidité	198
onoto, becombed, vicesse i oussieres, numerice i	170
Appendice	
Omega utilise dès maintenant et de plus en plus du Tritium en lieu	
et place du radium pour les cadrans lumineux de montres	202
Les amortisseurs «Super Shock-Resist» «Monorex» «Trishock»	206
La loupe Seitz	208
Outils Seitz à redresser les pivots de balanciers	210

Hemmungen

Schweizerische Ankerhemmung	121
Funktionen und Sicherheiten	121
Zurückgelegter Weg von Hebelarmen zwischen 1,30 und 4 mm	122
Das Messen von Fall, Ruhe und Zug	131
Lineare Werte der Sicherheiten	135
Zylinderhemmung	135
,	
Regulierung und Reparatur	
Terminologie	141
Terminologie	143
Tabelle zur Berechnung eines Gangscheines für Armbanduhren	146
Tabelle zur Berechnung eines Gangscheines für Taschenuhren	147
Berechnungsbeispiele für Armbanduhren A. B. C	149
Schwingungsweite der Unruhschwingungen	151
Stabile und unetabile Regulierung — Isochronismus	153
Weglassung der Rückerstifte	159
Diejenige Spiralfeder wählen, welche der Unruh entspricht	161
Spirale für monometallische Unruhen	162
Spirale für bimetallische Unruhen	162
Bekannteste Arten von Unruhen	163
Weglassung der Rückerstifte Diejenige Spiralfeder wählen, welche der Unruh entspricht Spirale für monometallische Unruhen Spirale für bimetallische Unruhen Bekannteste Arten von Unruhen Der Luftdruck Einwirkung des Luftdruckes auf Chronometer	165
Einwirkung des Luftdruckes auf Chronometer	171
Schnellregulierung mit Hilfe der Chronokomparatoren	173
Der Präzisionsgrad verschiedener Zeitmessinstrumente	183
Tabelle der Präzisionsansprüche für den Titel «Chronometer»	187
. •	
Merkblatt für die Regulierung	
Übersicht über die Ursachen und Wirkungen von Gangstörungen bei	Uhren
Zugfeder — Gesperr — Eingriffe — Zapfen	189
Schmiermittel — Hemmungen	191
Unruh — Spiralfede	193
Die Stellung der Ankergabel beim Anhalten der Uhr - Rückerstifte	
— Spiralrolle — Spiralklötzchen — Zifferblatt und Zeiger	195
Luftdruck und Meereshöhe — Magnetismus	197
Stösse, Erschütterungen, Geschwindigkeit	199
Staub, Feuchtigkeit	201
9	
Anhang	
Anstelle des Radiums verwendet Omega von nun an in ständig zu-	
nehmendem Masse Tritium für die Leuchtzifferblätter ihrer Uhren	203
Die Stossdämpfer «Super Shock-Resist» «Monorex» «Trishock»	207
Die Seitz-Lupe	209
Seitz-Werkzeuge zum Richten der Unruhzapfen	211

Préface

Le but de ces «Notes pratiques» est de donner à l'horloger-praticien, sous une forme condensée et avec de nombreux exemples d'applications, certaines données théoriques directement utiles, au rhabilleur tout particulièrement.

Le chapitre du ressort-moteur examine les principaux défauts du ressort et du barillet ainsi que la méthode rapide de calcul d'un nouveau ressort.

Le chapitre des engrenages donne, par des tabelles simples, le moyen de calculer tous les rouages d'après la technique actuelle.

L'échappement est traité pour les grands mouvements, comme pour les petites pièces, en donnant, au moyen de figures claires, la valeur des sûretés à observer ainsi que les moyens de vérification.

Le chapitre du réglage résume les principaux points à observer pour régler rapidement une montre qui vient d'être parée, en utilisant les appareils de mesure modernes (chronocomparateurs).

Les «Notes pratiques pour l'horloger» dont le texte parait en deux éditions: français-allemand et français anglais, exposent l'essentiel de ce qui doit être connu du rhabilleur.

Les traductions en allemand et en anglais ont encore comme but de constituer un dictionnaire précieux pour les commerçants et tous ceux qui désirent non seulement connaître la traduction d'un terme technique, mais encore en comprendre la signification.

G.-A. Berner

Ancien Directeur de l'Ecole d'horlogerie
de Bienne

Einleitung

Diese «Praktischen Notizen» setzen sich zum Ziel, dem praktisch tätigen Uhrmacher gewisse theoretische Kenntnisse, die vor allem dem Rhabilleur von unmittelbarem Nutzen sein können, in gedrängter Form und an Hand von zahlreichen angewandten Beispielen nahezubringen.

Im Kapitel über die Zugfeder werden die hauptsächlichsten Fehler von Feder und Federhaus untersucht, sowie die Methoden zur raschen Berechnung einer neuen Feder dargelegt.

Das Kapitel über die Eingriffe ermöglicht mit Hilfe von einfachen Tabellen die Berechnung aller Räderwerke nach den Verfahren der heutigen Technik.

Das Kapitel über die Hemmungen bezieht sich owohl auf grosse als auch auf kleine Werke. An Hand von leichtfasslicken Abbildungen wird auf den Wert der einzuhaltenden Sicherheiten und die Prüfmittel hingewiesen.

Das Kapitel über die Regulierung fasst die Hauptpunkte zusammen, auf die bei der Regulierung einer sochen zeparierten Uhr zu achten ist, unter Benützung der modernen Messapparate (Zeitwaagen).

Die «Praktischen Notizen für den Uhrmacher» enthalten das Wichtigste dessen, was dem Rhabilleur bekannt sein sollte.

Die beiden Ausgaben Französisch-Deutsch, Französisch-Englisch bezwecken ferner, wertvolle Wörterbicher zu bilden für Handelsleute und alle diejenigen, deren Wunsch es ist, nicht nur die Übersetzung eines technischen Ausdruckes zu besitzen, sondern auch mit dessen Sinn vertraut zu werden.

G.-A. Berner

Ehemaliger Direktor der Uhrmacherschule Biel

Le ressort et son barillet

Le remplacement d'un ressort est une opération courante chez les rhabilleurs. Elle mérite d'être faite avec soin, car le réglage de la montre est nettement amélioré lorsqu'elle possède ce qu'on appelle «une belle marche», c'est-à-dire des amplitudes du balancier aussi grandes que possible. Or, la grandeur des amplitudes dépend de la force développée par le ressort. Nous verrons que sous ce rapport l'épaisseur du ressort joue un rôle important.

Les bonnes manufactures vérifient constamment la qualité de cours ressorts. Ceux-ci sont calculés pour donner dans le barillet, le maximum de tours, le meilleur rendement et un effort moteur aussi grand et constant que possible.

Le rhabilleur ne possède ni les instruments, ni le remps pour étudier et choisir le nouveau ressort qu'il va loger dans un bardlet. S'il ne dépend pas de lui de choisir la qualité, qu'il sache au moins calculer correctement son ressort, et ne pas compromettre la bonne qualité d'une montre par ignorance des conditions que le ressort doit remplir comme force motrice.

Calcul da Cossort

Le calcul théorique montre que la force élastique du ressort en spirale augmente régulièrement avec les tours d'armage. Ceci est juste pour un ressort qui se développe librement, conque le spiral de la montre. Les choses se passent autrement dans un ressort qu'on loge dans un barillet. Les spires, plus ou moins fortement pressées les unes contre les autres, introduisent un frottement qui fausse les calculs. Dans le cas particulier, ce frottement joue un rôle régulateur et il se prouve que, dans un barillet, les premiers tours d'armage présentent de grandes variations de force, tandis que la force devient plus régulière et constante dans les derniers tours. Pour cette raison, on cherche à donner au ressort un nombre de tours de développement assez grand, 7 par exemple, dont on n'utilisera que les 4 derniers tours d'armage pour une marche de 24 heures. Les 3 premiers tours ne sont pas utilisés, ils constituent la réserve de marche.

Dans ce même exemple, nous pourrions utiliser un ressort donnant 5 tours de développement et utiliser les 4 derniers. La réserve de marche serait de 1 tour. Ce ressort serait plus fort que le premier, mais la force transmise serait moins constante.

La montre devant marcher 24 heures au minimum, on calcule le ressort pour une marche théorique totale de 36 ou 40 heures. C'est sur cette base que nous calculons un ressort à remplacer.

Die Zugfeder und ihr Federhaus

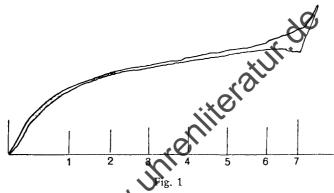
Das Ersetzen einer Feder ist ein dem Uhrmacher geläufiger Handgriff. Diese Arbeit soll mit aller Sorgfalt ausgeführt werden, denn die Ganggenauigkeit der Uhr wird wesentlich verbessert, wenn sie einen sogenannten «flotten Gang» besitzt, d. h. wenn die Schwingungen der Unruh möglichst gross sind. Nun hängt das Ausmass der Schwingungen von der Kraft ab, welche die Zugfeder entwickelt. Wir werden sehen, dass in dieser Beziehung die Dicke der Feder eine wichtige Rolle spielt.

In guten Betrieben wird die Qualität der hergestellen Federn fortwährend kontrolliert. Diese werden derart berechnet, dass sie im Federhaus ein Höchstmass von Umdrehungen, die bestmögliche Kraftleistung und eine möglichst grosse und gleichbleibende Antriebskraft gewährleisten.

Der Rhabilleur verfügt weder über die nötigen Zeit, noch über die nötigen Werkzeuge, um die neue Zugfeder zu untersuchen und zu studieren, die er ins Federhaus einsetzen will. Wenn es nun auch nicht von ihm abhängt, ihre Qualität zu bestimmen, so soll er wenigstens seine Feder korrekt berechnen können; er muss auch, will er nicht die gute Qualität einer Uhr gefährden, wissen, unter welchen Voraussetzungen die Zugfeder ihre Rolle als treibende Kraft versieht.

Berechnung der Feder

Die theoretische Berechnung zeigt, dass die elastische Kraft der spiralförmigen Feder hat den Aufzugsumgängen regelmässig wächst. Dies ist zutreffend für Federn, die sich frei abwickeln, wie etwa die Spiralfeder der Uhr. Anders liegt die Sache bei Federn, die man in ein Federhaus einsetzt. Die mehr oder weniger stark gegeneinander gepressten Windungen erzeugen eine Reibung, welche die Berechnungen über den Haufen wirft. In diesem besonderen Falle wirkt die Reibung regulierend; die ersten Aufzugsumgänge eines Federhauses können so untereinander grosse Kraftunterschiede aufweisen, während in den letzten Umgängen die Kraft regelmässiger und gleichbleibender wird. Aus diesem Grunde ist man bestrebt, der Feder eine genügend grosse Zahl von Entwicklungsumgängen zu verleihen — z. B. 7 — wovon vom Moment des Aufziehens an gerechnet, nur die letzten 4 für eine Gangdauer von 24 Stunden Verwendung finden. Die ersten 3 Umgänge werden nicht ausgenützt; sie bilden die Gangreserve.


Wir könnten in diesem Beispiel auch eine Feder mit 5 Entwicklungsumgängen verwenden, wovon die letzten 4 benützt würden; die Gangreserve

On compte le nombre de dents du barillet et du pignon de centre. Soit par exemple 84 et 12. Le rapport:

$$\frac{84}{12} = 7$$

indique que:

- 1 tour de barillet correspond à 7 heures de marche;
- 6 tours de barillet correspondent à 6 . 7 = 42 heures de marche;
- 7 tours de barillet correspondent à 7 . 7 = 49 heures de marche.

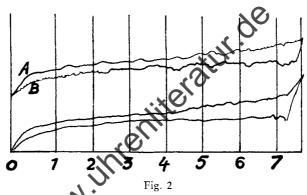
Ressort de montre de poche. Ce diagramme a été exécuté avec un ressort de qualité supérieure, choisi parmi plusieurs ressorts identiques, mais de fourciseurs différents. Le rendement de ce ressort est de 95 %

Feder einer Faschenuhr. Dieses Diagramm lieferte eine hochqualifizierte Feder, die aus mehreren gleichwertigen, aber von verschiedenen Lieferanten stammenden Exemplaren ausgewählt wurde. Die Nutzleistung dieser Feder beläuft sich auf 95 %

On choisira 6 tours et les dimensions du ressort seront données par deux multiplications, en consultant le tableau de la page 10.

^{*} Cette méthode de calcul qui nous a toujours donné de bons résultats, a été exposée par M. R. Lavest, dans le *Journal suisse d'horlogerie* (août 1927) et l'Agenda horloger (1935).

wäre also 1 Umgang. Diese Feder wäre stärker als die erste, aber die übertragene Kraft weniger gleichmässig.


Da eine Uhr wenigstens 24 Stunden gehen muss, berechnet man die Feder auf eine theoretische Gangdauer von insgesamt 36 oder 40 Stunden. Auf dieser Grundlage berechnen wir eine zu ersetzende Feder.

Man zählt die Zähne des Federhauses und des Grossbodenradtriebs. Die entsprechenden Zahlen seien z. B. 84 und 12. Das Verhältnis:

$$\frac{84}{12} = 7$$

sagt aus, dass 1 Umgang des Federhauses einer Gangdauer von 7 Stunden entspricht.

6 Federhausumgänge entsprechen der Gangdauer von 6 . 7 = 42 Stunden 7 Federhausumgänge entsprechen der Gangdauer von 7 . 7 = 49 Stunden

Ressort de monte bracelet. Le diagramme supérieur montre dans la courbe d'armage A et aussi dans la courbe de désarmage B, mais moins fortement, des variations périodiques, à chaque tour, provenant du bottement du ressort à l'intérieur du barillet. Le défaut corrige donne le diagramme situé au-dessous, notablement amélioré

Feder einer Armbanduhr. Das obere Diagramm zeigt in der Kurve A, die das Aufziehen der Feder veranschaulicht, und — weniger ausgeprägt — auch in der Kurve B, die das Ablaufen der Feder darstellt, periodische Schwankungen während je eines Umganges, die von der Reibung der Feder im Innern des Federhauses herrühren. Nach der Beseitigung dieses Fehlers ergibt sich das untere, sichtlich verbesserte Diagramm

Wählen wir 6 Umgänge, und die Grössenmasse der Feder ergeben sich, mit Hilfe der Tabelle auf Seite 11, aus 2 Multiplikationen:*

^{*} Diese Berechnungsmethode, die uns immer gute Resultate lieferte, ist von Herrn R. Lavest im «Journal suisse d'horlogerie» (August 1927) und im «Agenda horloger» (1935) dargelegt worden.

Nombre de tours maximum de développement pour un rayon intérieur de barillet - 1 mm

Nombre de tours	Epaisseur e du	Longueur L du	Diamètre d du
de développement	ressort	ressort	la bonde
5	0,0249	53,085	0,7968
$5^{1}/_{4}$	0,0241	55,607	0,7698
$5^{1/2}$	0,0239	56,088	0,7648
$5^{3}/_{4}$	0,0235	57,361	0,7520
6	0,0231	58,791	0,7382
$6^{1/4}$	0,0227	60,133	0,7256
$6^{1/2}$	0,0225	60,619	0,7120
$6^{3}/_{4}$	0,0219	62,648	0,7018
7	0,0215	64,260	0,6888
$7^{1/2}$	0,0209	66,800	0,6690
8	0,0203	69,400	0,6490
9	0,0192	74,200	0,6130
10	0,0182	79,100	0,5820
11	0,0173	83,800	0,5540
12	0,0165	88,400	0,5290

Remarque: Pour les nombres de tours jusqu'à 6, ainter un tour. Au-dessus de 6, ajouter 1 1/2 tour.

Hauteur du ressort: Mesurer le vide à l'intérieur du barillet et déduire comme sûreté:

Dans les petits mouvements	٠.		0,05 mm
Dans les grands mouvements .			
Dans la pendulerie			1,00 mm

Ce tableau est calculé pour un rayon intérieur de barillet égal à 1 mm et donne les dimensions correspondant au développement maximum. Il suffit de multiplier ces chiffres par le rayon intérieur du barillet pour obtenir les valeurs cherchées du ressort. Ce tableau donne les dimensions théoriques idéales, c'est-à-dire four un ressort dont les spires ne laissent aucun jour entre elles et sans tenir compte de la place occupée par le crochet, par la bride et aussi par la partie de la lame attachée à la bonde.

C'est la raison pour laquelle on fait les calculs en forçant de 1 ou 1¹/₂ tour le nombre de tours de développement choisi.

Exemple: Le diamètre intérieur du barillet mesuré donne 17,50 mm. Le vide du barillet mesure 2,65.

Le rayon est égal à 8,75 et le calcul sur 6 + 1 = 7 tours, donne:

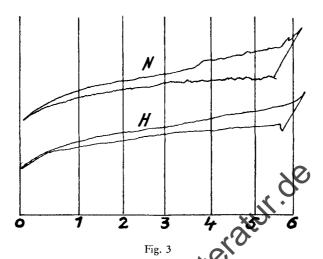
```
Epaisseur du ressort e = 0,0215 . 8,75 = 0,188 mm
Longueur du ressort L = 64,26 . 8,75 = 562 mm
Diamètre de la bonde d = 0,6888 . 8,75 = 6,02 mm
Hauteur du ressort h = 2,65 - 0,10 = 2,55 mm
```

Maximale Zahl der Entwicklungsumgänge für einen innern Federhausradius von 1 mm

Anzahl der Entwick- lungsumgänge	Federdicke e	Federlänge L	Durchmesser d des Federkerns
5	0,0249	53,085	0,7968
$5^{1}/_{4}$	0,0241	55,607	0,7698
$5^{1/2}$	0,0239	56,088	0,7648
$5^{3}/_{4}$	0,0235	57,361	0,7520
6	0,0231	58,791	0,7382
$6^{1/4}$	0,0227	60,133	0,7256
$6^{1/2}$	0,0225	60,619	0,7120
$6^{3}/_{4}$	0,0219	62,64 8	0,7018
7	0,0215	64,260	0,6888
$7^{1/2}$	0,0209	66,800	0,6690
8	0,0203	69,400	0,6490
9	0,0192	74,200	0,6130
10	0,0182	79,100	0,5820
11	0,0173	83,800	0,5540
12	0,0165	88,400	0,5290

Anmerkung: Für die Umgänge bis 6 ist ein Umgang hinzuzuzählen; für Zahlen über 6 sind 1½ Umgänge hinzuzuzählen.

Höhe der Feder: Man messe den leeren Raum im Innern des Federhauses und ziehe als «Sicherheit» ab:


bei	kleinen Werker	1			0,05	$_{\mathrm{mm}}$
bei	grossen Werken	ı			0,10	mm
bei	Pendulen				1,00	mm

Diese Tabelle ist für einen innern Federhausradius von 1 mm berechnet und liefert die den maximalen Entwicklungsumgängen entsprechenden Masse. Es genügt, diese Zellen mit dem innern Federhausradius zu multiplizieren, um die gesuchten Werte für die Feder zu erhalten. Die Grössenmasse dieser Tabelle sind ideale, theoretische Werte, d. h. sie beziehen sich auf eine Feder, deren Windungen ohne Zwischenräume aneinanderliegen; auch ist dabei keine Rücksicht genommen auf den durch den Haken, den Zaum und den am Kern befestigten Teil der Federklinge beanspruchten Raum.

Aus diesem Grunde erhöht man auch in den Berechnungen die gewünschte Zahl der Entwicklungsumgänge um 1 oder $1^{1/2}$ Umgänge. Beispiel: Der innere Durchmesser des Federhauses wird mit 17,50 mm gemessen. Der leere Raum des Federhauses misst 2,65. Der Radius ist gleich 8,75, und die Berechnung auf 6+1=7 Umgänge ergibt:

Dicke der Feder	$e = 0.0215 \cdot 8.75 = 0.188 \text{ mm}$
Länge der Feder	$L = 64,26 \cdot .8,75 = 562 \text{ mm}$
Durchmesser des Federkerns	$d = 0.6888 \cdot 8.75 = 6.02 \text{ mm}$
Höhe der Feder	h = 2.65 - 0.10 = 2.55 mm

Prenons encore deux exemples choisis, l'un pour un mouvement de montrebracelet, et l'autre pour une pendule à sonnerie.

Ressort de montre-bracelet. Le diagramme N a été exécuté avec le ressort non huilé. Son rendement est de 70%. Le même ressort huilé a donné le diagramme H dont le rendement est de 77%. Gain réalisé 7% avec développement plus régulier

Feder einer Armbanduhr. Das Diagramm N wurde mit einer nicht geölten Feder ausgeführt. Uhre Nutzleistung beträgt 70%. Die gleiche Feder lieferte, geöh, das Diagramm H, dessen Nutzleistung 77% beträgt. Erzielten Gewinn 7%, nebst regelmässigerer Abwicklung

Montre-bracelet. Barillet 70 dents, pignon de centre 10 ailes. Diamètre intérieur du barillet 5,20 mm. Rayon 2,60 mm. Vide du barillet 0,95.

Le rapport des nombres de dents étant de

$$\frac{70}{10} = 7$$

nous admettons 5 tours de développement. La durée de marche théorique est $5 \cdot 7 = 35$ heures. Les dimensions du ressort sont, en faisant le calcul, sur 5 + 1 = 6 tours:

Epaisseur du ressort $e = 0,0231 \cdot 2,60 = 0,06 \text{ mm}$ Longueur du ressort $L = 58,791 \cdot 2,60 = 153 \text{ mm}$ Diamètre de la bonde $d = 0,7382 \cdot 2,60 = 1,92 \text{ mm}$ Hauteur du ressort h = 0,95 - 0,05 = 0,90 mm

Nehmen wir noch 2 weitere Beispiele, wovon das eine das Werk einer Armbanduhr, das andere eine Pendule mit Schlagwerk betrifft.

Armbanduhr: Federhaus zu 70 Zähnen, Grossbodenantrieb zu 10 Zähnen. Innerer Durchmesser des Federhauses 5,20 mm, Radius 2,60 mm. Leerer Raum des Federhauses 0,95.

Da das Verhältnis der Zahnzahlen gleich

$$\frac{70}{10} = 7$$

ist, wählen wir 5 Entwicklungsumgänge. Die theoretische Gangdauer beträgt 5.7=35 Stunden. Die Grössenmasse der Feder betragen, auf 5+1=6 Umgänge berechnet:

Dicke der Feder	e	==	$0,0231 \cdot 2,60 =$	0,06	mm
Länge der Feder	L	==	58,791 . 260 =	153	mm
Durchmesser des Federkerns	d	===	0,7382 . 2,60 =	1,92	mm
Höhe der Feder	h	==	0,95 0,05 =	0,90	mm

Pendule mit Schlagwerk: Innerer Durchmesser des Federhauses 45,70. Radius = 22,85 mm. Leerer Raum des Federhauses 18 mm. Das Federhaus treibt das Grossbodenradtrieb über ein eingeschaltetes Rad und Trieb.

Die Zahnzahlen sind die folgenden

Federhaus 92 Zähne eingeschaltetes Trieb 12 Zähne eingeschaltetes Rad 62 Zähne Grossbodenradtrieb 10 Zähne

1 Federhausumgans entspricht

$$\frac{92062}{12.10}$$
 = 47,5 Umgängen oder Gangstunden.

Es handel sich um eine 8-Tage-Pendule, für die wir eine theoretische Gangdauer von ungefähr 13 Tagen annehmen, d. h. 13 . 24 = 312 Stunden.

Die Zahl der Entwicklungsumgänge beträgt dann

$$\frac{312}{47.5}$$
 = 6,56 Umgänge.

Wir zählen 6,5 Umgänge. Die Berechnung auf Grund von 6,5 + 1,5 = 8 Umgängen ergibt:

Dicke der Feder	e	=	0,0203	22,85	==	0,46	mm
Länge der Feder	L		69,40	22,85	==	1585	mm
Durchmesser des Federkerns .	d	===	0,649	22,85	==	14,80	mm
Höha der Ender			10	1		17	mm

Pendule à sonnerie. Diamètre intérieur du barillet 45,70. Rayon = 22,85 mm. Vide du barillet 18 mm. Le barillet commande le pignon de centre par l'intermédiaire d'un pignon et d'une roue.

Les nombres de dents sont les suivants:

Barillet	92 dents
Pignon intermédiaire	12 ailes
Roue intermédiaire	62 dents
Pignon de centre	10 ailes

1 tour de barillet correspond à

$$\frac{92.62}{12.10} = 47,5 \text{ tours ou heures de marche.}$$

Il s'agit d'une pendule 8 jours pour laquelle nous adoptons une marche théorique de 13 jours environ, soit 13. 24 = 312 heures. Le nombre de tours de développement sera de

$$\frac{312}{47.5}$$
 = 6,56 tours.

Nous adopterons 6,5 tours. Le calcul fait sur 6,5 + 1,5 = 8 tours, donne:

Influence de l'épaisseur, de la hauteur et de la longueur du ressort

L'épaisseur e du ressort figure à la troisième puissance (e³) dans la formule qui donne la valeur de la force motrice du ressort. C'est dire qu'elle a une importance très grande.

importance très grande.

En effet, supposons dans une montre 19" un ressort, dont l'épaisseur est de 0,19 mm et le moment de force moyen 2800 grammes mm (ce qui signifie 2800 grammes agissant sur une petite poulie ayant un rayon de 1 mm). Si nous utilisons un ressort de 0,18 mm d'épaisseur, la force motrice sera réduite à peu près dans la proportion de

$$\frac{0.18^{3}}{0.19^{3}} = 0.85 = 85^{0}/0.$$

Le moment de force qui était de 2800 g/mm devient:

2800 . 0,85 = 2380 g/mm
Perte
$$15^{\circ}/_{0}$$
 = 420 g/mm

La hauteur du ressort joue un rôle moins important. On se basera sur les indications données au bas du tableau et qui correspondent aux expériences de la pratique.

La longueur du ressort supporte quelques centimètres en plus ou en moins (en plus de préférence) sans affecter sensiblement le nombre de tours de développement maximum.